

Final Report for AOARD Grant 114118

“Vision based SLAM in dynamic scenes”

2012-Dec-20

Name of Principal Investigators (PI and Co-PIs):

- e-mail address : eletp@nus.edu.sg

- Institution : National University of Singapore

- Mailing Address : Department of Electrical and Computer Engineering

- Phone : +65-6516-2130

- Fax : +65-6779-1103

Period of Performance: 09/26/2011 – 09/25/2012

Abstract: In this project, we studied the vision-based simultaneous localization and
mapping (SLAM) problem from a novel perspective. We employed multiple independently

moving cameras, while conventional studies are limited with a single camera (or a
multi-camera rig where the relative positions between cameras are fixed). Our flexible

configuration of cameras makes this algorithm applicable to robot teams, which also makes

this study the world’s first vision based SLAM algorithm for robot teams. Furthermore, the
collaboration among multiple cameras allows us to deal with challenging dynamic scenes

which make most of previous algorithms fail. This work was accepted for publication at the
IEEE Transaction of Pattern Analysis and Machine Intelligence (TPAMI), with impact factor

5.9, #1 in all engineering and AI.

Introduction: Please refer to the attached technique paper.

Experiment: Please refer to the attached technique paper.

Results and Discussion: Please refer to the attached technique paper.

List of Publications and Significant Collaborations that resulted from your AOARD

supported project:

Danping Zou, Ping Tan, CoSLAM: Collaborative Visual SLAM in Dynamic Environments, IEEE

Transaction on Pattern Analysis and Machine Intelligence, Accepted for publication.

Attachments:

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 JAN 2013

2. REPORT TYPE
Final

3. DATES COVERED
 26-09-2011 to 25-09-2012

4. TITLE AND SUBTITLE
Vision based SLAM in dynamic scenes

5a. CONTRACT NUMBER
FA23861114118

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Ping Tan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National University of Singapore,4 Engineering Drive 3,Singapore
117576,Singapore,SG,117576

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD, UNIT 45002, APO, AP, 96338-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-114118

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this project, we studied the vision-based simultaneous localization and mapping (SLAM) problem from
a novel perspective. We employed multiple independently moving cameras, while conventional studies are
limited with a single camera (or a multi-camera rig where the relative positions between cameras are
fixed). Our flexible configuration of cameras makes this algorithm applicable to robot teams, which also
makes this study the world?s first vision based SLAM algorithm for robot teams. Furthermore, the
collaboration among multiple cameras allows us to deal with challenging dynamic scenes which make most
of previous algorithms fail. This work was accepted for publication at the IEEE Transaction of Pattern
Analysis and Machine Intelligence (TPAMI), with impact factor 5.9, #1 in all engineering and AI.

15. SUBJECT TERMS
Guidance, Navigation,Guidance, and Control

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 20XX

CoSLAM: Collaborative Visual SLAM in
Dynamic Environments

Danping Zou and Ping Tan,Member, IEEE,

Abstract- This paper studies the problem of vision-based simultaneous localization and mapping (SLAM) in dynamic environ
ments with multiple cameras. These cameras move independently and can be mounted on different platforms. All cameras work
together to build a global map, including 30 positions of static background points and trajectories of moving foreground points. We
introduce inter-camera pose estimation and inter-camera mapping to deal with dynamic objects in the localization and mapping
process. To further enhance the system robustness, we maintain the position uncertainty of each map point. To facilitate inter
camera operations, we cluster cameras into groups according to their view overlap, and manage the split and merge of camera
groups in real-time. Experimental results demonstrate that our system can work robustly in highly dypamic environments and
produce more accurate results in static environments.

Index Terms-Visual SLAM, Swarm, Dynamic Environments, Structure-from-Motion

1 INTRODUCTION

Many vision based SLAM (simultaneous localization
and mapping) systems [23), [10), [18) have been devel
oped, and have shown their remarkable performance
on mapping and localization in real-time. Recent
works took further steps to provide high level scene
understanding [20), or to improve the system accu
racy and robustness, such as ' loop closure' [16), 're
localization' [36), and dense depth map reconstruction
[22). These works have made cameras become more
and more favorable sensors for SLAM systems.

Existing vision-based SLAM systems mainly focus
on navigation in static environments with a single
camera. However, the real world is full of moving o'b
jects. Although there a.re robust methods to detect and
discard dynamic points by treating them as outliers
[18), [5), conventional SLAM algorithms tend to fail
when the portion of moving points is large. Further,
in dynamic environments, it is often important to
reconstruct the 30 trajectories of the moving objects
[38), [35) for tasks such as collision detection and path
planning. This 30 reconstruction of dynamic points
can hardly be achieved by a single camera.

To address these problems, we present a collabora
tive visual SLAM system using multiple cameras. The
relative positions and orientations between cameras
a.re allowed to change over time, which means cam
eras can be mounted on different platforms that move
independently. This setting is different from existing
SLAM systems with a stereo camera [23), [25) or a
multi-camera rig [17) where all cameras are fixed on a
single platform. O ur camera configuration makes the
system applicable to the following interesting cases:

• D. Zou a11d P. Tall al"e with the Natio11nl University of Singapore.
E-mail: damris.zou@gmail.com; eletp@11us.edu.sg.

..
1) wearable augmented reality [5), where multiple
cameras a.re mounted on different parts of the body; 2)
robot teams [4), [34), [1), where multiple robots work
in the same environment and each carries a single
camera because of limited weight and energy capacity,
e.g. micro air vehicles (MAVs) [40).

In our system, we use images from different cam
eras to build a global 30 map. We maintain the po
sition uncertainty of each map point by a covariance
matrix, and iteratively refine the map point position
whenever a new observation is available. This de
sign increases the system robustness and accuracy
in dealing with complex scenes. Further, we classify
map points as dynamic or static at every frame by
analyzing their triangulation consistency. False points
caused by incorrect feature matching are also detected
and removed. For robust localization in dynamic en
virorunents, we use both dynamic and static points to
simultaneously estimate the poses of all cameras with
view overlap. We divide cameras into groups accord
ing to their view overlap. Cameras within the same
group sha.re a common view, and work collaboratively
for robust mapping and localization. Groups can split
or merge when cameras separate or meet.

Our system was tested in static and dynamic, in
door and outdoor scenes. Experimental results show
that our method is more accurate and robust than
existing single camera bas-ed SLAM methods. Our
system succeeds in highly dynamic envirorunents,
and is able to reconstruct the 30 trajectories of moving
objects. The system currently runs at approximately
38 ms per frame for three ca meras. In the next section
we shall briefly review existing visual SLAM methods
and discuss our work in detail.

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 20XX

2 RELATED W ORK

Visual SLAM with a single camera There are
mainly two types of methods for single camera based
visual SLAM. One is based on the structure-from
motion (SFM) technique [15]. Royer et al. [26] first
reconstructed a 3D map of the scene offline from
a learning sequence, and then estimated the camera
pose in real-time by referring to that map. Mouragnon
et al. [21] proposed a local bundle adjustment method
so that mapping and pose update can run in nearly
real-time. Klein et al. [18] put the time-consuming
bundle adjustment into an asynchronous thread, and
made the system much faster.

The second type of methods model SLAM as a
Bayesian inference problem, and solve it through the
Extended Kalman Filter [9], [10]. In [30], line features
were used to complement point features to improve
the matching robustness. Eade et al. [12] applied
particle filter and a top-down approach to handle
a relatively large number of landmarks (hundreds)
more efficiently. To improve the robustness of SLAM,
Williams et al. [36] proposed a re-localization method
to recover the SLAM system from tracking failures.

Strasdat et al. [31], [33] compared both types of
methods, and concluded that the SFM based methods
produce more accurate results per unit computing
time, while filter based methods could be more ef
ficient when processing resource is limited.

These methods often do not consider dynamic
scenes. Some of them, such as [18], [51 detected and
discarded dynamic points as outliers. However, this
approach tends to fail when the portion of dynamic
points is large. Some more recent methods, such
as [24], [191 applied multi-body SFM to deal with
dynamic environments. Howeve~ this approach is
only applicable to rigid moving objects, and the 3D
reconstruction of moving points is up to a scaling
ambiguity [24]. In comparison, we propose to solve
the SLAM problem in dynamic scenes with multiple
independently moving cameras. Our approach can
reconstruct the full 3D of dynamic points within the
scene map.

Visual SLAM with multiple cameras Nister et
al. [23] proposed a visual odometry system with
a stereo rig. Their system was much like a SFM
based single camera SLAM system with an additional
camera to generate map points at every frame. They
also pointed out the narrow base line between stereo
cameras could affect the map quality. To address this
problem, Paz et al. [25] separated close and far 3D
points, and used far points to estimate camera rotation
only. To obtain wider FOV, Kaess et al. [17] mounted
multiple cameras in a rig facing different directions to
combine the advantages of omnidirection vision [37]
and monocular vision. Castle et al. [5] used multiple
cameras distributed freely in a static environment,
where each camera was processed by an independent

t? t? t?
rt[j rt[j Video frames rt[j
....
r Feature detect ion & t racking

Pose Mop Point
estimation building classification

-Collabarative SLAM system

30 tracks
(dynamic points)

Map
(staUc points)

Fig. 1. CoSLAM system architecture.

t?
rt[j
.... ---,

Cam era
grouping

Camera
poses

2

single camera based SLAM system. A camera could
be localized according to different maps by registering
its feature points to the other map points.

These methods still focus on static scenes and do
not take full advantage of multiple cameras. Further,
the relative positions of their cameras are often fixed.
In comparison, we allow cameras to move indepen
dently and achieve more flexible system design. For
example, our cameras can be mounted on different
robots for robot team applications.

SLAM in dynamic environments Existing works
on SLAM in dynamic environments mostly use filter
based methods and have been successfully app lied to
SLAM problems with sensors such as laser scanners
[14], [381 [35] and radar systems [21 [3]. In this work,
we aim to use cameras to address the SLAM problem.
Compared with other sensors, cameras are passive,
compact and energy efficient, which have important
advantages for micro robots with limited weight and
energy capacity (such as MAVs [40], [1]). To the best
of our knowledge, this work is the first visual SLAM
solution in a dynamic environment with multiple
cameras moving independently. This method could
be applied to emerging swarm robotics applications
[11 [27].

3 SYSTEM OV ERVIEW
The intrinsic parameters of all our cameras are cal
ibrated beforehand. Our collaborative SLAM system
treats each camera as a sensor input, and incorporates
all inputs to build a global map, and simultaneously
computes the poses of all cameras over time. The
system framework is illustrated in Figure 1. The sys
tem detects and tracks feature points at every frame,
and feeds them to the four SLAM componen ts. We
use Kana de-Lucas-Tomasi(KLT)[28] tracker for both
feature detection and tracking because of its good
balance between efficiency and robustness. However,
there is no restriction to use other feature detectors
and trackers such as the 'active matching' [6).

JOURNAL OF ~E;)< CLASS FILES, VOL X, NO. X, JANUARY 20XX

The four SLAM components are 'camera pose es
timation', 'map building', ' point classification', and
'camera grouping' . The main pipeline of our sys
tem follows conventional sequential structure-from
motion (SFM) methods. We assume that all cameras
look at the same initial scene to initialize the system
Afte r that, the 'camera pose estimation' component
computes cam era poses at every frame by registering
the 3D map points to 2D linage features. From tilne
to time, new map points are generated by the 'map
building' component. At every frame, points are clas
sified into different types by the ' point classification'
component. The system maintains the view overlap
information among cameras throughout time. The
'camera grouping' component separates cameras into
different groups, where cameras with v iew overlap
are in the same group. These groups could merge and
split when cameras meet or separate. In the following
section, we shall describe these four components in
detail.

4 C AMERA POSE ESTIMATION

Our system alternatively uses two different methods
for camera pose estimation: intra-camera pose esti
mation and inter-camera pose estimation. In the for
me r, each camera works independently, where tracked
fea tu re points from a camera are registered with
static map points to compute its pose. ln dynamic
environments, the number of static map points could
be sma ll, or the static points are distributed within a
sma ll image region, which can make the intra-camera.
pose estimation fail. In such a case, w e sw itch to the
inter-camera pose estimation method that uses both
static a nd dynamic points to simu lta neously obtain
poses for all cameras.

4.1 Intra-camera Pose Estimation

If the camera intrinsic parameters are known, the cam
era pose e = (R. t) can be computed by minimizing
the reprojection error (the distance between the linage
projection of 3D map points and the ir corresponding
image feature points), namely,

e· = arg~n ~p (l l m; -1'(M i, 9)11) . (1)
i

where P(M;, 8) is the image projection of the 3D
point l\111, m ; is the linage feature po int registered to
M ;, II · II measures the distance between two linage
points. i is an index of feature points. The M-estimator
p : R+ -+ R+ is the Tukey bi-weight function [39]
defined as

x _ { t2 / 6 (1- [1- (f)2]3) if lxl $ t
P() - t2 / 6 otherwise. (2)

Assuming that the error of feature d etection and
tracking obeys a Gaussian distribution N(O , u2 I), we
set the threshold t in p(·) as 3u. Equa tion (1) is

static background
I

4 _} n l th

th Cam ra B
n

3

Fig. 2. The pose of camera A at the n•h frame cannot
be estimated from its previous pose, since it observes
only the moving object (the grey square). However,
its relative pose with respect to camera B can be
determined. So the absolute pose of camera A can be
computed.

minimized by the iteratively re-weighted least squares
(IRLS) method, where e is initia]jzed according to the
camera pose at the previous frame. At each iteration of
the IRI..S, the Levenberg-Marquart algorithm is used
to solve the non-linear least square problem, where e
is paramete rized in Lie algebra se(3) as [32].

4.2 Inter-camera Pose Estimation

When the number of visible static points is s mall,
or the sta tic poiJlts are located in a sma ll image
region, the intra-camera pose estilnation is uns table
and sometimes fails. Fortunately, points on moving
objects give info rmation about the relative camera
poses. Figure 2 provides such an illustration. The pose
of camera A at the n'h frame cannot be decided on
its own, since it only observes the moving object (the
grey square). However, its relative pose with respect
to the camera 8 can be decided. We can therefore use
both static a nd dynamic points together to decide all
camera poses s imultaneously.

Actually, the 3D coordinates of dynamic points can
only be computed when the camera poses are a lready
known. Hence, our system in fact silnultaneously es
tilnates both the camera poses and the 3D pos itions of
dynamic points. We formulate the inter-camera pose
estimation p roblem as an minimization of reprojection
error,

{8c} • = arg min ~ { ~ vfp (llmi - P (lVI;, 9 c)ll)
M o.{e. } c iES

+ ~ vjp (llmi -1'(M ;, 9 c)ll) }·
jE D

(3)

Here, c is a n index of cameras, Sand D are the set of
'static' and 'dynamic' map points. vf represents the

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 2.0XX

visibility of the i-th map point at camera c (1 for
visible, 0 otherwise).

The difference between the 'intra-camera pose esti
mation' and the 'inter-camera pose estimation' lies in
the second term of Equation (3), where the dynamic
points are included in the objective function. The
relative poses between cameras are therefore enforced
by minimizing the reprojection error of the dynamic
points. Hence, our system can determine the poses of
cameras where few static points are visible. As the
cameras need to have view overlap, we only apply
inter-camera pose estimation to cameras within the
same group. We refer the reader to Section 6 for more
details about camera grouping.

The optimization of Equation (3) is also solved by
the IRLS. The camera poses and 3D positions of dy
namic points are initialized from the previous frame.
We call intra-camera pose estimation by default. We
call the inter-camera pose estimation only when the
number of dynamic points are greater than that of
static points, or the area covered by the convex hull
of static feature points is less than 20% of the image
area.

5 MAP MA INTENAN CE

Unlike previous SFM based SLAM systems [18), [51
where only the 3D position is recovered for each map
point, we further maintain the position uncertainty
of each map point to help point registra tion and
distinguishing static and dynamic points. Specifically,
we recover a probability distribution of the map point
position, which is represented by a Gaussian func
tion N (M i , ~i) · Mi is the triangulated position. The
covariance matrix ~i E JR3 x 3 measures the position
uncertainty.

To facilitate computation, for each feature point, we
keep a pointer directing to its corresponding map
point. Similarly, for each map point, we also keep
pointers directing to its corresponding linage feature
points in each view, and store the local image patches
centered at these feature points. We downsize the
original input image to its 30% size, and take a patch
of 11 x 11 pixels. We further keep track of the frame
numbers when a map point is generated or becomes
invisible.

5.1 Position Uncertainty of Map Points

When measuring the uncertainty in map p oint po
sitions, we only consider the uncertainty in feature
detection and triangulation. In principle, we could
also include the uncertainty in camera positions. We
assume the feature detection error follows Gaussian
distribution N (O, a 21). The position uncertainty of a
3D map point is described by the covariance com
puted as

(4)

4

J"

Fig. 3. Both the mean position and position covariance
matrix are updated when a new observation is coming.

where J i E JR(2k)x3 is the Jacobian of the camera
projection function that maps a 3D map point to its
2D linage coordinates in all views, and k denotes the
number of views used for triangulation.

When there is a new linage observation m~n+l) of
a map point, we can quickly update its 3D position
with Kalman Gain

M~n+l) = M~n) + ~[Pn+I (M~n)) - m~n+l)] . (5)

Here, Pn+l(M~n)) computes the image projection of
M~n) in the (n + 1) 'h frame. The Kalman Gain K i E
llt3 x 2 is computed as

K i = ~~n) i [(a 21 + i[~~n) j i r 1
(6)

Here, j i E llt2 x 3 is the Jacobian of P n+t(·) evaluated
at M~n) . The triangulation uncertainty can meanwhile
be updated by

(7)

We illustrate the idea of this refinement in Figure 3.
Unlike SLAM algorithms based on Kalman filter,

such as [9), [111 which spend a high computational
cost O(N2

) (N is the number of map points) to main
tain the covariance matrix for both camera states and
the whole map states (including correlation between
positions of different points), we only maintailn the tri
angulation uncertainty for each individual map point.
The computation cost of our method is only O(N) .
Further, the computation is independent at each point,
which enables parallel computation to achieve better
efficiency. Maintaining position uncertainty is impor
tant for the following map operations such as point
classification and registration described in Section 5.3
and Section 5.4. For example, the point classification
benefits from the position uncertainty. Even for static
points, their reconstructed positions are always chang
ing over tune due to triangulation uncertainties. (This
can be seen clearly in our supplementary videos.)
With the position covariance matrix ~i, we can dis
tinguish static and dynamic points better. Though we
could also maintain the covariance among different
points and uncertainty of camera positions, we do not
include them for efficiency consideration.

JOURNAL OF Ne;X CLASS FILES, VOL. X, NO. X, JANUARY 20XX

u

camera 1 came~ 2

Fig. 4. Guided feature matching between two cameras.
u, v are the projections of a map point. We will prefer
the match i j than i <--+ k for its better consistency to
1.£ v.

5.2 Map Points Generation

We propose two methods to generate new map points.
The first one, 'intra-camera mapping', reconstructs
static map po ints from feature tracks in each in
dividual came ra. To dea l w ith moving objects, we
propose the second method, ' inter-camera mapping',
to generate map points from corresponding points
across cameras w ithiJ1 the same group (i.e. cameras
with view ove rlap).

5.2. 1 Intra-camera mapping
Previous methods usually use key frames to generate
new map points [18], [26), where feature points in se
lected key fram es are matched and triang ulated. Since
all feature po ints are tracked over time in our system,
it is not necessary to select key frames to match those
feature points again. If there a re urunapped feature
tracks (whose po inte rs to map po ints are NULL) that
are long enough (> N min fra mes), we use the begin
ning and the end fra mes of this track to triangulate
a 30 point. Once the 30 position is computed, the
covariance can also be evaluated by Equation (4). We
then check the reprojection e rror at aU frames of the
feature track. lf the M.aha lanobis distance (described
in Section 5.3) between the projection an d the feature
point is smalle r than B fo r a ll frames, a new map point
is generated and ma rked as 'static'.

5.2.2 Inter-camera mapping
Inter-camera mapping is applied to unmapped feature
points only. We match the image features between
different cameras by zero-mean normalized cross cor
relation (ZNCC). To av oid ambig uous matches, the
corresponding points a re searched only in a narrow
band within 3a distance to the e pipolar line. Only
matches with ZNCC > Tncc a re considered. We further
use the correspondence o f existing map points as
seeds to g uide ma tching - a pa ir of feature points
is not considered to be matched, if it has a very
difference dispa rity vecto r from that o f the nearest
seed.

As shown in Fig ure 4, suppose we want to find the
corresponding po int fo r the unmapped feature point

5

i. There are two candidates k and j within the band of
the epipolar line. v. is the closest mapped feature point
to i . If it is within 1/Jr pixels distance to i , we use the
disparity vector D uv to guide feature matching. We
compare the difference between the dispa rity vectors.
A candidate with very different d ispa rity from the
seed is discarded, e.g. candidate k is removed in
Figure 4 because IIDuv- Do, II > tf>d- The best match is
then obtained from the remaining candidates by the
winner-take-all strategy.

After matching featu re points between cameras,
we triangulate the corresponding points to generate
new map points. Exhaustive fea tu re matching in all
possible camera pairs is inefficien t. We construct a
graph for cameras within the same group where
cameras are linked accordj11g to tbe ir view overlap.
We select a spanning tree of the g rap h and on ly match
features between cameras that a re cortnected by the
spanning tree edges. More de ta ils of th is spanning
tree are discussed in Section 6. lnte r-came ra mapping
are called every 5 frame in our system w hen dynamic
points are detected.

5.3 Point Registration

At every frame, we need to associa te each map point
with its incoming observa tions - newly detected im
age feature points from different came ras. Man y of the
feature points are reg istered to a m ap point through
feature tracking. We further process the remaining
unmapped feature points. For these p oints, we only
consider active map points w hich a re static and have
corresponding feature po ints w ithin the most recent
N rec frames. These map po ints a re cached in our
system for fas t access. Fo r each unmapped feature
point detected at the current fra me, we go through
these active map points for reg istra tion.

We project active ma p points to the images, and
compare the image patches centered at the projections
w ith that of the feature point throug h ZNCC. Cons id
ering the uncertainty in map point position and fea
ture detection, the projected positio n of a map point
M ; should satisfy a Gaussian dis tribution N (mt, ci),
where the covariance c; = j 1I;1j f + a I, J1 E IR2 x 3 is
the Jacobian of the image projection 1'(-) evaluated at
M i . The Mal1alanobis distance is computed as

V 2(mj, m ;) = (mj- m;? cj 1 (m1 - m 1) . (8)

We only consider the feature point m1 which has the
smallest Mahalanobis distance to m 1. We then check
the ZNCC score between M ; and m 1. To a Ueviate
problems caused by perspective disto rtion, when se
lecting the image pa tch for M ., w e choose the one
stored from the nearest cam era. rn1 is d iscarded if
its ZNCC score < T ncc· We furthe r traverse back
along the feature track o f m 1 to check if its previous
positions are also nearby to the p rojections of M ;. U

JOURNAL OF Ne;X CLASS FILES, VOL. X, NO. X, JANUARY 20XX

the Mahalanobis distances between them in aU frames
are smaller than 9, then the m j is registered to M i.

Once an unmapped feature point is registered to
a 3D map point, the 3oj position and the position
covariance of this map point can be updated based on
the new observation. However, the new observation
obtained from point registration, unlike those ob
tained from feature tracking, usually deviates largely
from the previous observations (e.g. this new obser
vation often comes from a different camera). It will
lead to inaccurate estimation if we use the iterative
refinement described in Equation (5) and Equation (7).
In such case, we retriangulate the 3D position of this
map point with a ll observations and recompute the
covariance by Equation (4). To reduce the computa
tional cost, we select only two observations from the
feature track in each camera for retriangulation, which
have the largest viewpoint changes .

5.4 Point Classif ication

At every frame, we need to dis tinguish 'dynamic'
points on moving objects and 'static' points on the
background. A nalve method for this classification
is to threshold the position variation of the 3D map
points. lt is, however, difficult to set a common
threshold for different scenes. Further, in our system,
the positions of static points are also changing over
time, since their positions are upda ted whenever new
observations are available. Especially, for static points
in the distant background, their positions may change
significantly as cameras move from far to near.

We instead distinguish static and dynamic points by
the reprojection e rror, which can be easily measured
on the image plane. For a dynamic point, if we project
its 3D position at the (n - l }'h frame to the n •h
frame, since the 3D position actually changes, the
projection should be distant from its tracked corre
sponding feature points. In other words, if we use
image feature points from different (or the same) time
to triangulate the 3D position of a dynamic point,
the reprojection error should be large (or small). In
comparison, if the point is sta tic, the reprojection error
should be always s ma ll , no matter if we use image
feature points from the same or different time. Based
on this observation, we design a process to distinguish
'static' and 'dynamic' po ints. The whole process is
illustrated in Figure 5. We use ' fa lse' points to denote
map points generated from incorrect correspondence.
An intermediate s tate ' uncerta in' is also introduced
for points need further investigation.

Initially, we consider all points as static. At ev
ery frame, we check the reprojection errors of all
'static' points. The projected position of a static map
point obeys Gaussian distribution N (nJt.e;). The
Mahalanobis distance betw·een corresponding feature
points and m 1 should be less than 9. If the tracked
feature point has larger Mahalanobis distance, the

6

:~·-- [SiiiiiCl-oif-----~ .
' ? Intra

camera
NO outlier

YES

...... ,. :

? .
NO :

.,... • .,.. ··~ IUII!oNMy ~· fora,._ ~

L 3 " i "40 :
'--~

Fig. 5. Map point classification. The pipeline for clas
sifying a point into four types : 'static', 'dynamic', 'false'
or 'uncertain'.

map point is likely to be 'dynamic' or ' false'. We
consider these points are intra-cam em outliers, i.e. out
liers for intra-camera triang ula tion. We mark them as
'uncertain' for the next step of classification.

An uncertain point could be either 'dynamic' or
'false'. To distinguish them, we re· tria ngulate its 3D
position M i with its tracked feature points in the same
frame from different cameras. If the Mahalanobis
distances of all these feature points to the projection
of M i are smaller than 9, we consider the map point
as 'dynamic'. Otherwise, it is an inter-camera outlier,
i.e. an outlier for inter-camera triangulation. We con
sider inter-camera outliers as 'false' points caused by
incorrect feature matching. Note that the 3D positions
of dynamic points are naturally updated over time
during point classifica tion. Hence, our system is able
to produce the 3D trajectories of moving points.

A dynamic point may become static if the object
stops moving. Hence, we project the current 3D po
sition of a dynamic point to the previous frames. lf
the projection is dose to its tracked feature points
(Mahalanobis distance < 9) for N m1n of continuous
frames, we consider tllis point as 'static'.

Figure 6 shows two video frames o f a camera from
the 'sitting man' example, where all the points on
the body should be dyna mic. We use green and blue
points to visualize s tatic and dyna mic points. Though
all map points were marked as 'static' initia lly, during
the SLAM process, our map point classifi cation com
ponent successfully differentiated dynamic and static
points. This can be seen from the rig ht in Figure 6,
where all points on the body were ma rked in blue.

6 CAMERA GROUPING

The inter-camera operations, e.g. mapping and pose
estimation, can be only applied to cameras with view
overlap. As cameras move independently, the view
overlap among cameras changes over time. ln this sec
tion, we describe our method to identify and manage
camera groups, where cameras with view overlap are
in the same group.

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 20XX

Fig. 6. Map point classification. Green and blue points
indicate static and dynamic map points. Left: during the
initialization, all points were marked as 'static'. Right:
our system correctly identified the dynamic points by
map classification.

4 ~ 4 L\ vst~>I Split

~ rzr 5

.
\,3 5 .·"'·· ...

'-v--" '-v-"' '-y--1

group #l group #l group #2

Fig. 7. Camera grouping and splitting. Each node is
a camera and each edge links two cameras with view
overlap. The solid edges are those on the spanning
trees.

6.1 Grouping and Splitting

Since we store a pointer to the corresponding 3D
point for each mapped feature point, we can quickly
count the number of common map points Nii between
two cameras i , j . We construct an undirected graph
where the nodes represent the cameras. If N ii > 0,
we connect the camera i and j by an edge weighted
by Nii · A connected component in thi.s graph forms
a camera group. The inter-camera operations are only
applied to cameras in the same group.

As discussed in Section 5.2.2, to improve the ef
ficiency of inter-camera mapping, we do not match
feature points between all camera pairs with view
overlap. Instead, we extract a spanning tree for each
camera group with maximum weight, and only match
feature points between cameras if the edge connecting
them is on the selected spanning tree.

A camera group will split when any camera in it
moves away and does not have view overlap with
others. Such a case is illustrated in Figure 7. The edges
between camera 3, 4 and 3, 5 are removed as they have
no common feature points any more. The original
graph is therefore separated into two connected com
ponents, each of which forms a new camera group
at the current frame. A real example is provided in
Figure 8. Four cameras were split into two groups,
where the red and green cameras share a common
view, and the blue and yellow cameras share another
common view.

7

...

·:;~ ~~
:

Fig. 8. The cameras were split into two groups accord
ing to their view overlap.

Fig. 9. The two camera groups were merged when
the cameras meet again. The camera poses and map
points were adjusted for consistent merge. The light
gray curves (see the zoomed area) represent the cam
era trajectories before adjustment, and the dark ones
are those after adjustment.

6.2 Merging

Two camera groups will be merged if their cameras
meet and have \'iew overlap. To detect if cameras
in different groups have view overlap, we project
the map points generated from one camera onto the
image planes of the cameras in the other group. If the
number of visible points is large (> 30% of all map
points from that camera in our implementation), and
the area spanned by these points are large (> 70% of
the image area), we consider the two cameras to have
view overlap and will merge their camera groups. A
real example of such a merge is shown in Figure 9,
the separated camera groups meet again.

When cameras move away from each other, the
mapping and localization are performed within each
camera group independently. When the cameras meet
again, due to drifting errors [71 the 3D maps re
constructed from different groups are inconsistent.
For example, the same object could be reconstructed
at different 3D positions in different groups. Hence,

JOURNAL OF ~Te;X CLASS FILES, VOL. X, NO. X, JANUARY 20XX

GtOUp M2

~~~ 0 0 Q h; rd co:lralnl5 () U 
I I I I I 
I I I I I 

I : r I I 
I : : I I 
I I I I I 

f 

I 
3 0 ----Q---0 0 ---0 

: I I ~4 I I 
~ I I I.J I I 
I I I I I 

6 -o' o· sort constraints o' ' -o· 
2 --- ---- "" --

··--.. ~---...• ··-.... ../·· •.. --·· 
frame 

~heed pos•s at frame 1 

Fig. 10. Camera poses adjustment. Each vertex is a 
camera pose. Each edge represents a relative pose 
constraint, where solid and dash edges are hard and 
soft constraints respectively. 

during group merging, we need to correct both the 
camera poses and map points to generate a single 
global consistent map. Suppose two camera groups 
are separated at the 18

' frame a11d are merged at the 
pth frame. We will adjust all camera poses from frame 
2 to F, and adjust the map points generated within 
these frames, which consists of two successive s teps 
described in the following section. 

6.2.1 Step 1 

We first estimate the correct relative poses between 
cameras at frame F. For this purpose, we detect and 
match SURF features between cameras in dilierent 
groups, and then compute their relative poses (i.e. the 
essential matrices). We use these essential matrices to 
guide the matching of feature points (i.e. searching for 
correspondences in a narrow band within 3a distance 
to the epipolar line). For each pair of matched feature 
points, we then merge their corresponding 30 map 
points by averaging their positions. In the next step, 
all the map po ints and their corresponding feature 
points in the F'11 fra me a re put into bundle adjustment 
[15) to refine a ll came ra poses. 

6.2.2 Step2 

Now, we use the updated relative camera poses at 
the pth frame as hard constraints to refine all camera 
poses. Figure 10 illustrates our problem formulation. 
We form a undirected graph where each camera pose 
is a vertex and each edge enforces a relative pose 
constraint. As shown in Figure 10, for each camera, 
its poses at neighboring frames are connected. For 
cameras in the same group, their poses at the same 
frame are connected if they are neighbors in the 
spanning tree. We fix camera poses in the 1"' frame. 
Except the relative poses at the F'h frame, we treat 

8 

all the other relative poses as soft constraints. Hard 
and soft constraints are denoted by solid and dashed 
lines in Figure 10 respectively. 

Let p = 1. ... , P and q = 1, ... , Q be cameras from 
dilierent groups. We denote the pose of the camera p 
at the i'h frame by T~ and the relative pose between 
the camera p and qat the i 111 frame by T~, where 

. ( R!. t i ) T~= of { . ( 
R.!... a ti ) Tpq = of' t . (9) 

~· ~ E JR3
X

3 and t:, t~ E R3 are rotation matrices 
and translation vectors. a is used to account for 
the global scale di.fference between the two camera 
groups. 

We treat the relative poses at the F'11 frame as hard 
constraints. Hence, 

T F T F T F 0 q - pq p = 1 X4 , 

which is equivalent to 

R~'- R~' n ~' 
q pq 'p 

tF- R~' t - t~' q pq P a pq 

= 03x3 

= 03xl· 

(10) 

(11) 

(12) 

Although there are (P + Q) x (P + Q - 1)/ 2 relative 
poses at the pth frame, we select only (P + Q - 1) 
of them, which either lie on the spanning trees of the 
camera groups or connect the two spannn1g trees, as 
illustrated by the solid lines in Figure 10. Putting all 
these constraints together, we get two linear systems 
with the following forms 

~F=O a~ V~ =O. (~ 

where rF E R9 (P+Q) is a vector stacked with elements 
of all the rotation matrices at the F'" frame, and 
tF E JR3(P+Q)+I is a vector that consists of all the 
translation elements at the F'11 frame together with 
the scale factor a. 

The relative camera poses from the original SLAM 
process are used as soft constraints. For any cameras 
rn and n connected by the dashed edge, we expect 
their relative pose to have small change by the ad
justment. Hence, 

(14) 

Here, T~~ is the re lative pose between m and n ac
cording to the SLAM process before merging, Putting 
all soft constraints together, we obtain two similar 
linear systems 

Ar "" a f 0 and Bt "" b f 0, (15) 

where r E JR9F(P+Q) and I E JR3F(P+Q) are vectors 
stacked by all the rotation and translation elements of 
all frames. Notice that the right sides of the two linear 
systems are not equal to zero because the camera 
poses at the 1st frame are fixed. 

Combining both the hard constraints in Equation 
(10) and soft constraints in Equation (14), we obtain 



 
 

 

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 20XX 

G(oup # 1 

Fig. 11 . Camera poses and map point positions are 
adjusted during group merge. Left: before the adjust
men~ the corresponding feature points of A in the 
'camera 3' and 'camera 4' do not lie on the its epipolar 
lines. Right: after adjustment, all its corresponding 
feature points lie on the epipolar lines. 

the updated cameras poses and the scale factor by 
solving two constrained linear least square problems 

arg min liAr - a ll2 s.t. Ur = 0 (16) 
r 

and 
arg ~n IIBi- il ll 2 s.t. vi= o, (17) 

' 
where t E IR3F (P+Q)+l is t appended with a scale 
factor a . U, V,B,b are the augmented matrices and 
vectors by adding zero elements. N ote that we do 
not impose orthonormality condition to the rotation 
matrices in this formulation. Hence, once we obtain 
results from the above two equations, we further find 
the closest rotation matrices to the initial matrices by 
SVD (i.e. setting all the singular values to one). 

The above optimization problem is converted to 
a set of sparse linear equations [13). We use the 
CSparse[8)library to solve them in our system. After 
the camera poses have been updated, the 3D positions 
of map points are also updated by re-triangulating 
their corresponding feature points. 

In Figure 9, the camera poses are updated when 
the two camera groups merge. The light gray curves 
(and dark curves) represent the camera trajectories 
before (and after) merging. To further exemplify the 

9 

importance of pose updates, we examine the epipolar 
geometries in Figure 11. In the left of Figure 11, we 
plot the epipolar lines of the feature point A in the first 
camera. Because of the map inconsistency between 
the two camera groups, the corresponding feature 
points in the third and the fourth camera do not lie 
on the epipolar lines. In comparison, after camera 
pose update and re-triangulation of map points, the 
corresponding feature points in all cameras lie on 
their respective epipolar lines as shown in the right of 
Figure 11. To provide an additional validation, when 
visualizing the projection of a map point in Figure 
11, we use its circle radius to indicate its number cor
responding feature points. It is clear that the overall 
circle size is larger on the right, which suggests map 
points have more corresponding feature points after 
the adjustment. This increase in corresponding feature 
points comes from the merge of duplicated 3D map 
points. 

7 IN CREMENTA L REFINEMENT 

We refine both the camera poses and the 3D map 
points from time to time by bundle adjustment. For 
better efficiency, bundle adjustment only refines the 
camera poses of some selected key frames and the 
map points reconstructed from these frames. When
ever there is a significant drop (30%) in the nwnber 
of tracked feature points in any camera, we insert a 
key frame for all cameras. 

The bundle adjushnent runs in a separate thread, 
which operates with the most recent J( key frames. 
It is called when J( - 1 key frames have been in
serted consecutively (i.e. in two successive bundle 
adjushnent calls, there is one common key frame). 
The bundle adjustment only refines camera poses of 
key frames and map points reconstructed from these 
frames. To refine the camera poses of the other frames, 
we adopt a similar method as Section 6.2.2. Basically, 
we fix the camera pose at key frames, and use the 
relative poses between successive frames before bun
dle adjushnent as soft constraint. In other words, we 
enforce T m - T~~ T n ~ 0, where T~~ is the relative 
pose between camera m, n before bundle adjustment. 
We then update all the camera poses while keep those 
at key frames unchanged. After the pose refinement, 
the 3D positions of other map points are updated by 
re-triangulating their corresponding feature points. 

8 RESULTS 

We tested our collaborative SLAM system on both 
static scenes and dyna1nic scenes. All data were cap
tured by hand held cameras with Field of View about 
70° and processed offline. In all our experiments, we 
set the standard deviation of feature detection uncer
tainty a as 3.0 pixels. The threshold for Mahalanobis 
distance () is set to be 2.0 to decide if a feature point is 
an inlier or outlier (with confidence of 95% according 



 
 

 

JOURNAL OF ~E;X ClASS FILES, VOL X, NO. X, JANUARY 20XX 

. -· .-
Fig. 12. Our results on the 'Wall' sequence. Trajectories 
of different cameras are visualized in different color 
from the top-down viewpoint. Map points are projected 
in the input video frames for a reference. 

to Gaussian distribution). The ZNCC threshold Tncc 

to measure the similarity between image patches is 
set to 0.7. The minimum number of frames Nmin to 
triangu late a feature track is set to GO. The number of 
frames Nrcc for active map point caching is 200. The 
radius ¢r for searching nearby seed matches in 'inter
camera mapping' is set to 10% of max{image width, 
image height}, and ¢d = 3¢r· In practice, we found 
our resul ts are not sensitive to these parameters. We 
also present the results on an accompanying video. 

8.1 Static Scenes 

8.1. 1 Critical camera motion 

Single camera based visual SLAM systems usually fail 
under critical motion, such as camera rotation without 
trans lation. This is because w hen a camera rotates, the 
number of visible map points drops quickly. However, 
new map points cannot be generated because of lit
tle camera translation. This problem is more serious 
when the camera field of view is small. Our CoSLAM 
system can deal with such situation by the collabo
ration among multiple cameras as demonstrated in 
'wall' example in Figure 12. In this example, cameras 
started rotating at around the 180'h frame and finished 
at about the 256'h frame. Our method successfully 
captured the motion of aU cameras and the two 
perpendicular walls. 

For a comparison, we applied the s i11g le camera 
based SLAM system, PTAM [18), on the same data. 
The results from PTAM are provided in Figure 13. 
PTAM failed on all cameras when they started to 
rotate. Even the re-localizatoin cannot recover it from 
this failure. This is because the re-localization works 
only when the newly captured frames have view 
overlap with previous key frames. In camera rotation, 
the camera is turning to a novel view that is not 
observed before. Hence, re-localization cannot help in 
this case. 

8.1.2 Drift analysis 

We tested our CoSLAM system in a midd le scale 
'courtyard' example. The average length of camera 

10 

rrame 253 ff:.me 2 13 frame 264 

Fig. 13. Results generated by PTAM (18) on the 'wall ' 
sequence. The system failed on all three sequences 
when the camera started rotating. 

Fig. 14. The overview of the 'courtyard' example. Four 
hand held cameras were used to capture the data. The 
view overlaps between cameras changed over time. 

trajectories was !>6 m. The input videos were captu t-ed 
in a courtyard by four hand held cameras. The view 
overlap among cameras changed over time, which 
led to camera group splitting and merging as dis
cussed in Section 6. During data capturing, we walked 
around the courtyard and returned to the starting 
place_ Hence, the drift error can be measured by 
manually identifying corresponding points in the first 
and the last video frames. We analyzed the drift errors 
with different number of cameras in the system. An 
overview of the scene is provided in Figure 14. 

We tried all possible 1-camera, 2-camera, 3-camera, 
and 4-camera CoSLAM. The average distance drift 
errors were 2.53m, 1.57m, 1.19m, and 0.67m respec
tively. The average scale drift error were 0. 7G, 1.10, 
0.96, 1.00 respectively. This result is visualized in Fig
ure 15, where the red and green line segment indicates 
the reconstruction of the sign board from the first and 
Jast frames. This result indicates that CoSLAM with 
multiple cameras can successfully reduce the drift 
errors. 

For a comparison, we tried to apply the PTAM 
system to this example and measure its drift e rror. 
However, PTAM failed at all the four 1-camera tests 
and cannot finish the w hole loop. In comparison, our 
system only fa iled in one 1-camera test. We believe 
this is because we maintain the triangulation uncer-



 
 

 

JOURNAL OF ~TE)( CLASS FILES, VOL. X, NO. X, JANUARY 20XX 

Fig. 15. The final drift error is measured by the dif
ference between the board reconstructed from the first 
(marked by red) and the last video frames (marked by 
green). The left is an example image of the board. The 
right are the CoSLAM results with different number of 
cameras. 

tain ty of map points, and continuously improve map 
accuracy w hen mo r-e images are captured . 

8.2 Dynamic Scenes 

The capability of the our method to robustly estimate 
camera poses in high ly dynamic scenes is demon
strated in Figure 16. Note tha t the nwnber of s tatic 
points (green dots) was s ma ll in aJJ cameras. Further, 
the static po ints were often distributed within a small 
region, which usually leads to large e rror if the camera 
pose is estima ted only according to sta tic points. Our 
CoSLAM syste m a utomaticalJy switched to the 'inter
camera pose estima tion', and successfully es timated 
the poses of all cameras in s uch a challenging case. 
For a compa rison, we disabled the ' inte r-camera pose 
estimation' and applied the ' intra-camera pose esti
mation' to the same sequence. The system failed at 
the# 665-th frame because o f the large error in pose 
estimation. This compa rison can be seen clearly from 
the visualization o f the came ra trajectories in the right 
column of Figu re 16. 

We tested our CoSLAM sys tem in an indoor scene, 
the 'walking man' example in Figure 17. The relatively 
dim indoor lighting usua lly leads to blurry images, 
w hich make feature tracking difficuJ t and pose estim a
tion inaccurate. Our CoSLAM system can successfully 
handle this data. The estimated map points and cam
era trajectories are visua lized from the top view in the 
left of Figure 17. An impo rtant feature of our system 
is tllat we can recover the 3D trajectories of moving 
points, which is demo nstra ted in Figure 18, where the 
blue curves are 3D trajectories o f the dynamic points 
on the walking person. We aJso manually specify 
corresponding points to measure the drift error. Our 
CoSLAM system had 1.2m distance drift and 1.12 
scaJe drift. The average le ngth of camera trajectories 
is 28.7m. 

11 

Fig. 17. Result on the 'walking man' example. The blue 
points represent the moving points in the scene. 

~-. : 

Fig. 18. Our system can track the time-varying 30 
positions of the dynamic points on the moving objects. 

We further tested the robustness of our system on 
a rniddJe sca le 'garde n' example, where the average 
length of camera trajectories is 63m. Three hand held 
cameras were used to capture the input videos in a 
garden. Several people walked in front of the cam
era to disturb the capturing process. As the mov ing 
people frequently occupied a large part of the v ideo 
frame, the SLAM proble m w ith this data was very 
challenging (please refe r to the supplementary video). 
As shown in Figure 19, our method succeeded in 
s uch a data. The manually measured drift errors are 
5.3m in d istance and 0.65 in scale. These errors are 
relative large, because the moving objects frequently 
occluded nearby static po ints . In tnis situation, the 
faraway static poin ts p layed a more important role 
in camera pose estimation. Howeve r; the positions of 
these faraway points were less re liable, which led to 
inaccura te estimation and fina lly produced a relative 
large d rift error. 

8.3 Run Time Efficiency 

Our sys tem was developed under the UbWltu 64-bit 
system with an Intel i7 CP U (4 cores at 2.80GHz), 
4G RAM and an nVidia GeForce GTX 480 g raprucs 
card. The main thread of the system estimated the 
egomotion of the cameras and gene rated map po ints . 
BWldJe adjustment and camera gro up management 



 
 

 
 

JOURNAL OF " TEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 12 

camera illt2 
~- 4 •• -- ----------- ----------- ------------------------------------------------------------------------------------------------------------------------

frame # 665 

. ... :\~ 
.... 

frame #1125 

frame # 665 

Fig. 16. Our results on the 'sitting man' sequence. There are only a few static points in the scene. Our 'inter
camera pose estimation' successfully estimates all camera poses (shown in the first two rows). The bottom row 
shows the result by only applying the 'intra-camera pose estimation'. The pose of the blue camera (camera #3} 
was completely wrong at the 665-th frame, because of little static points. The reconstructed map points (both 
static and dynamic points) and camera trajectories of the last 150 frames are provided on the right (visualized 
from the top view) 

TABLE 1 
Average timings 

components ms calling cond1ttons 
feature tracking 8.7 every frame (by GPU) 
intra-camera pose estimation 10.7 every frame 
inter-camera pose estimation 57.2 see Section 4 
map point classifica tion 4.9 every frame 
map point registra tion 14.47 every frame 
intra-camera mapping 2.3 see Section 5.2 
inter-camera mapping 48.3 see Section 5.2 

were called in separated threads. Feature tracking was 
implemented in GPU according to the GPU-KLT [29]. 

We evaluated the run time efficiency on the ' garden' 
sequence shown in Figure 19. All the 4800 frames 
were used for evaluation. The average time spent 
in each call of all components are listed in Table 
1. Most of the components nm quickly. The ' inter
camera pose estimation' and the 'inter-camera map
ping' took about 50 ms to nm. The munber of map 
points (including both dynamic and static points) and 
the processing time of each frame are also shown 
respectively in Figure 21. Although the rw1time ef
ficiency was reduced when inter-camera operations 
were called (see the peaks in Figure 21), our system 
on average ran in real-time and took about 38ms to 
process a frame with about one thousand of map 
points. 

- stabt 
- oynam< 

1~l 
() 0 500 ! COO 1500 2000 2500 JOOO 3500 4000 4500 SOCO 

Fig. 21. Run time efficiency with three cameras. Top: 
number of map points over time. Bottom: the time spent 
to process each frame. The average time to process a 
frame is 38ms. 

8.4 System Scalability 

We tested our system scalability w ith 12 cameras 
moving independ ently in a static scene. Some results 
are shown in Figure 20. On the left of each row 
shows the top view of the reconstructed scene map 
with camera trajectories. On the right are the input 
images from all 12 cameras. Images framed by the 
same color come from cameras in the same group. 
This scene contains several separated 'branches' as 
can be seen from the scene map in the third row. These 
12 cameras were divided into several troops, and each 



 
 
 

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 20XX 13 

L_ 

.. -; .... . , 
'--"'.·· '·::.....' ------'---'----' l:::==:::::::~:__ __ _j _'""""'...,_'--'-''-'-"-~~·.:..,_)· . --------' 

fram~ # 1264 frame # 1 605 ftt~m~ #2750 fromc # 44 20 

Fig. 19. The collaborative SLAM result in a challenge dynamic scene using three cameras. An overview of the 
reconstruction is provided in the first row from the top and side view respectively. The gray point cloud indicates 
the static scene structures, while the blue trajectories are the moving points. In the middle are the detected 
feature points on video frames. The green and blue points represent static and dynamic points respectively, 
while the yellow points are the unmapped feature points (please zoom in to check details). In the last row we 
provide some zoomed views of the camera trajectories with their frame index marked in the first row. 

troop exp lored one branch. Our system can correctly 
handle camera group splitting and merging . (Please 
refer to the supplementary video.) However, when 
there are 12 cameras, the average run time efficiency 
d ropped significantly to about lfps due to the heavy 
computation. 

9 CONCLUSIO N AND FUTURE WORK 

We propose a novel collaborative SLAM system with 
multiple moving cameras in a possibly dynamic envi
ronment. The cameras move independently and can 
be mounted on different platforms, whid1 makes our 
system potentially applicable to robot teams [4)., [34]., 
and wearable augmented reality [5]. We address sev
eral issues in pose estimation, mapping and camera 
grou p management, so that the system can work 
robustly in challenging dynamic scenes as shown in 
the experiments. The whole system runs in real-time. 
Currently, our system works offline with pre-cap tured 

video data. We p lan to integrate a da ta capturing com
ponent to make an online system. Further, our current 
system requires synchronized cameras, and all images 
from these cameras are sent back and p rocessed in 
the same computer. It will be interesting to develop 
a distributed system for collaborated SLAM, where 
computation is d istributed to multip le computers. 

10 ACKNOWLEDGEMENT 
This work is supported by the Singapore grant R-263-
000-555-112, R-263-000-620-112 and AORAD grant R-
263-000-673-597. 

REFERENCES 
[1) J. Allred, A. Hasan, 5. Panichsakul, W. Pisano, P. Gray, 

J. Huang, R. Han, D. Lawrence, and K. Mohseni. Sensorflock: 
an airbome wireless sensor network of nucro-air velucles. In 
Proc. of lnt'l Co11j 0 11 Embedded networked se11sor systems, pages 
117- 129. ACM, 2007. 

[2) C. Bibby and I. Reid. Simultaneous localisation and mapping 
in dynamic environments (slamide) with reversible data asso
ciation. ln Proc. of Robotics: Science and Systems, 2007. 



 
 

 

JOURNAL OF !!-TEl( CLASS FILES, VOL. X, NO. X, JANUARY 20XX 14 

'!\\';f.~··~··-? ,-.~;-.n ·:~;~-
.,. , ',j "":· ., , .. . 

• - !!!:;iiii • • 

Fig. 20. Our system was tested with 12 cameras. The map and camera poses are shown in the left, where 
the top left corner shows the camera grouping. Images and feature points are shown in the righ~ where images 
framed in the same color come from cameras in the same group. These three rows have four, three and one 
camera groups respectively. 

(3( C. Bibby and l. Reid. A hybrid slam representation for 
dynamic marine environments. In ICRA, pages 25'7- 264. IEEE, 
2010. 

(4) W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Tilrun. 
CoJJaborative multi- robot exploration. ln IEEE Proe. of Robotics 
mrd Automnfion, volume 1, pages 476-481, 2002 

(5) R. 0. Castle, G. Kle in, and D.'W. Murray. Video-rate localiza
tion in multiple maps for wearable augmented reality. In Proc 
12th IEEE Tnt Symp 0 11 Wenrable Computers, pages 15--22, 2008. 

[6) M. Chli and A. J. Davison. Active matching lor visual tracking. 
Robot. Auton. SI(St., 57(12}:1173-1187, 2009. 

(7] K. Corne lis, F. Verbiest, and L. Van Goo!. Drift detection and 
removal for sequential s tructure from motion algorithms. TEEE 
Trmrs. on PaHem Analysis muf Madrine luteUigmce, 26(10):1249-
1259, 2004. 

[8) T. Davis. Direct Methods for Sparse Unear Systems. SlAM, 2006. 
[9) A. Davison. Real-time simultaneous localisation and mapping 

with a single camera. In TEEE Proe. of ICCV, pages 1403-1410, 
2003. 

(10) A. Da' ' ison, I. Reid, N. Molton, and 0. Stasse. MonoSlAM 
Real-time single camera SlAM. IEEE Trans. on Pattenr Analysis 
and Machine lnteJ/igerrce, pages 1052- 1067, 2007. 

(11) H. Durrant-Whyte and T. l3ailey. Simultaneous localisation 
and mapping (slam}: Part i the essential algorithms. In IEEE 
Robotics and Automati011 Ma:?azine. Citeseer, 2006. 

(12) E. Eade and T. Drummond. Scalable monocular SlAM. In 
IEEE Proc. of CVPR, volume 1, pages 469-476, 2006. 

(13) G. Golub. Nume rical methods for solving linea r least squa res 
problems. NumeriscJre Mathematik, 7(3):206-216, 1965. 

(1 4] D. Halulel, R. Triebel, W. Burgard, and S. Tiu-un. Map building 
with mobile robots in d)'llamic environments. In IEEE Proe. of 
Robofics and Automafiarr, volume 2, pages 1557- 1563, 2003. 

(15) R. Hartley and A. Zisse rman. Multiple view gearnetry, volume 6. 
Cambridge university press, 2000. 

(16) K. Ho and P. New man. Detecting loop closure with scene 
sequences. lut'lfoumnl of Computer Visiarr, 74(3}:261- 286, 2007. 

(17] M. Kaess and F. Dellaert. Visual slam with a multi-camera rig. 
Georgia lnsfitute of TecJmology, TecJt. Rep. GIT-GVU-06-06, 2006. 

(18) G. Klein and D. Murray. l'arallel tracking and mapping for 
small AR workspaces. In IEEE & ACM Proc. of llft'l Sym. on 
Mixed mrd Augmented Reality, pages 225--234, 2007. 

(19) A. Kundu, fC Krishna, and C. Jawahar. Realtime motion 
segmentation based multibody visual slam. pages 251- 258, 

2010. 
(20] B. Leibe, N. Cornelis, K Corne lis, and L. Van-Goo!. Dynamic 

3d scene ana lysis from a moving vehicle. In IEEE Proc. of 
CVPR, 2007. 

(21) E. Mouragnon, M. Ulumier, M. Dhome, F. Dekeyser, and 
P. Sayd. Real time localization and 3d reconstruction. ln IEEE 
Proe. of CVPR, volume 1, pages 363-370, 2006. 

(22] R. Newcombe and A. Da\' ison. Live dense reconstruction with 
a single moving camera. ln IEEE Proc. of CVPR, pages l 49S-
1505, 2010. 

[23] D. Nister, 0 . Naroditsky, and J. Bergen. Visual odometry. In 
IEEE Proe. of CVPR, volume 1, 2004. 

(24) K. Ozden, I( Schindler, and L. V. Goo!. Multibody sttucture
from-motion ul practice. TEEE Trans. on PaHern Analysis mrd 
MacJrine l•rtelligelfce, pages 1134-1141, 2010. 

(25) L. Paz, P. Pint~s, J. Taid6s, and J. Neira. Large-scale 6-dof 
slam with stereo-in-hand. IEEE Trans. 011 Robotics, 24(5}:946-
957, 2008. 

(26] E. Royer, M. LhuiJJier, M. Dhome, and T. O lateau. Localiza
tion ul urban environments: monocular vision compared to a 
d ifferential gps sensor. 2:114-121, 2005. 

(2'7) E. Sahin. Swarm robotics: From sources of inspiration to 
domains of application. Swarm Robotics, pages 10-20, 2005. 

(28) J. Shi and C. Tomasi. Good features to track. In IEEE Proc. of 
CVPR, pages 593-600, 1994. 

(29] 5. Sinha. http:/ /www.cs.wlc.edu/~ssu'iha/Research/GPU_ 
KLT/. 

[30] P. Smith, I. Reid, and A. Davison. Real-time monocular SlAM 
with straight lilles. In Proc. British MacJrine Visi011 Carrference, 
\' Olume 1, pages 17- 26, 2006. 

[31) H. Strasdat, J. Montie l, and A. Davison. Real-time monocular 
SlAM: Why filter? In IEEE Proc. of Robotics and Autarnation, 
pages 2657- 2664, 2010. 

(32) H. 'Strasdat, J. Montie l, and A. Davison. Sca le d rift-aware large 
scale monocular slam. ln Proc. of Robotics: Scimce and Systems, 
2010. 

[33) H. Strasdat, j. Montiel, and A. Davison. Visual SLAM Wh}' 
Filte r? lma:?e and Vision Computing, 2012. 

[34] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for 
mobile robot mappulg with applications to multi-robot and 3D 
mapping. ln IEEE Proc. of Robotics and Autumation, volume 1, 
pages 321- 328. IEEE, 2002. 

(35) C. ·wang, C. Tilorpe, S. Thrun, M. Hebert, and H. Durrant-



 
 

 

JOURNAL OF llTE)< CLASS FILES, VOL. X, NO. X, JANUARY 20XX 

[36] 

(37] 

[38] 

[39] 

[40] 

Whyte. Simultaneous localization, mapping and moving ob
ject tracking. l11t'l of Robotics Researdt, 26{9):889, 2007. 
B. Williams, G. Klein, and I. Reid. Real-Time SLAM Relocali
sation. In IEEE Proc. if /CCV, pages 1-S, 2007. 
N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor. Onuti
din.>ctional vision for robot navigation. [n IEEE Work. on 
Omnidirectional Vision, page 21, 2000. 
D. Wolf and G. Sukhatme. Mobile robot sin1ultaneous local
ization and mapping in dynantic environments. Autonomous 
Robots, 19(1):53-65, 2005. 
Z. Zhang. Parameter estimation techn iques: A tutorial with ap
plication to conic fitting. Image and vision Computi11g, 15{1):59-
76, 1997. 
J. ZUPFEREY. Bio-I11spired visio11-bnsed flying robots. PhD the
sis, ECOLE POLYTECHNJQUE FEDERALE DE LA USANNE, 
2005. 

Danping Zou received the BS degree from 
Huazhong University of Science and Tech
nology(HUSD in 2003 and the PhD degree 
from Fudan University in 2010 in China. He 
is now a research fellow in the Department of 
Electrical and Computer Engineering at Na
tional University of Singapore. His research 
interests include video tracking and ICMI-level 
3D vision. 

Ping Tan received the BS degree in Ap
plied Mathematics from the Shanghai Jiao 
Tong University in China in 2000 and the 
PhD degree in Computer Science and En
gineering from the Hong Kong University of 
Science and Technology in 2007. He joined 
the Department of Electrical and Computer 
Engineering at the National University of Sin
gapore as an assistant professor in 2007. He 
received the MIT TR35@Singapore award 
in 2012. His research interests include com

puter vision and computer graphics. He is a member of the IEEE and 
ACM. 

15 


